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1 polarization drift

Let us return to the case of uniform orthogonal electric and magnetic fields which we
have studied in lecture 6. This time we allow for slow variations of the electric field.
Like in lecture 2 we start with the particle’s equation of motion, but this time we take
the crossproduct with B

B2

Remember that
(A×B)×C =
(A ·C)B− (B ·C)A

m
dv
dt

= q(E+v×B)
∣∣∣∣× B

B2 ,

and

m
q
dv
dt
× B

B2 =
E×B

B2 +(v×B)× B
B2

m
q
dv
dt
× B

B2 =
E×B

B2 +
B
B2 (v ·B)−v

or after rearranging and using that Ḃ = 0

v− B
B2 (v ·B)︸           ︷︷           ︸
⊥ velocity

=
E×B

B2︸   ︷︷   ︸
E×B drift

−m
q
dv
dt
× B

B2 = vE −
m

qB2
d
dt

(v×B) .

The left side can be interpreted as a perpendicular velocity and the first term on the
right side is again the E×B drift. Now we average over one gyroperiod

vd = vE −
m

qB2
d
dt

(v×B)
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and identify the left side as a drift velocity. In lecture 6 we have found that the E×B
drift results from a Lorentz transformation E′ = E+v×B into the particle’s moving
reference frame and the fact that E′ must vanish for a free particle. Similarily, the
v×B term represents a perpendicular electric field E⊥ =−v×B, and thus

vd = vE +
m

qB2
dE⊥
dt

= vE +
q
|q|

1
ωcB

dE⊥
dt

.

The last term is called Polarization drift

vp =
q
|q|

1
ωcB

dE⊥
dt

,

which results from a slow variation of the electric field. vp is proportional to the
particle mass and depends on its polarity. Thus, the polarization drift creates a current
into the direction of the electric field

jp = n0e(vpi−vpe) =
n0(me +mi)

B2
dE⊥
dt

.

2 dielectric constant of a plasma

A dielectric material is an insulator which gets polarized by an electric field. Clearly
we expect such a behavior from a plasma. To see this, lets position a plasma between
the plates of a capacitor

C = (ε0 + εp)
A
d
,

where A is the area of the plates separated by d. ε0 = 8.854Fm−1 is the permittivity
of the vacuum, and εp is the permittivity of the plasma we are interested in. When
applying an alternating voltage V at the capacitor, we will observe the current

i =C
∂V
∂t

,

which after substituting C into it and expressing V/d by E

ip = εpA
1
d

∂V
∂t

= εpA
∂E
∂t

.

On the other hand, in the previous section we have just found the current resulting
from an alternating electric field applied to a plasma

ip = jpA =
ρm

B2 A
∂E
∂t

.

Comparing the two expressions for ip yields the low frequency plasma permittivity for
transverse motion

εp =
ρm

B2 ,
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where ρm is the plasma’s mass density. We get further insight into the nature of εp by
substituting characteristic plasma parameters into the relative permittivity

εr =
ε

ε0
= k = 1+

ρm

ε0B2 ,

where ε is the total permittivity

ε= ε0 +
ρm

B2 = ε0

(
1+

ρm

ε0B2

)
.

Now,

εr ≈ 1+
nmi

ε0B2 = 1+
e2

e2
me

me

nmi

ε0B2

≈ 1+
(

ne2

ε0me

)
︸      ︷︷      ︸

ω2
p

(mi

eB

)
︸   ︷︷   ︸

1/ωc,i

(me

eB

)
︸   ︷︷   ︸
1/ωc,e

and hence,
ε

ε0
=

ω2
p

ωc,iωc,e
. (1)

The low frequency plasma permittivity depends only on the plasma frequency and
the cyclotron frequencies of the ions and electrons. We will derive later the same
expression more rigorously using the fluid description of the plasma. This will also
elucidate the meaning of the simplifications we have made to obtain Eq. (1).

3 where do we stand?

Parameters Drifts Drift currents

ρc =
mv⊥
|q|B

vE =
E×B

B2

ωc =
|q|B
m

vp =
1
ωpB

dE⊥
dt

jp =
ne(mi +me)

B2
dE⊥
dt

µ=
T⊥
B

vG =
T⊥
qB

[
B̂×∇B

B

]
jG =

ne(mi +me)

B2 (B×∇B)

vc =
2T‖
qB

[
B̂× R̂c

Rc

]
jR =

ne(T i
‖+T e

‖ )

B2R2
c

(B×Rc)

INVARIANTS

1. µ
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2. J = m
∫

v‖ds

3. Φ =
∮

vdrdφ= 2πm
q2 M

4 trapping in dipolar magnetic fields

4.1 Dipole field

Bdipole =
µ0

4πr2
M
r
(−2sinλêr + cosλêλ) (2)

and

Bdipole =
µ0

4πr2
M
r

(
1+3sin2 λ

)1/2
, (3)

where λ is the magnetic latitude and M = 8.05 ·1022Am2 is the magnetic moment of
the Earth’ dipolar field.

!λ

!r

We need an equation for a magnetic field line, i.e. an expression for B(λ) along a
line of force. If ds = (dr,λdλ) is an arc element, then a line of force satisfies

ds×B !
= 0,

from which follows that

dr
Br

=
rdλ
Bλ

.

Using Eq. (2)

dr
r

=−2sinλdλ
cosλ

=
2d(cosλ)

cosλ
,
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and after integration

r(λ) = r(0)cos2 λ. (4)

r(0) is usually expressed as multiple L = r(0)/Rp of the planet’s equatorial radius Rp.
Substituting Eq. (4) into Eq. (3) and introducing the equatorial field strength at the
planet’s surface

Bp =
µ0Mp

4πR3
p

gives the standard form for a planetary magnetic dipolar field

B(λ,L) =
Bp

L3

(
1+3sin2 λ

)1/2

cos6 λ
(5)

cos2 λp = L−1, (6)

where λp is the latitude at which a field line of a given L dissects the planet’s surface.
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!−90∘ !90∘

As apparent from the figure above, a planetary dipolar field is in fact a magnetic
bottle configuration.
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